In the random geometric graph G(n, r n ), n vertices are placed randomly in Euclidean d-space and edges are added between any pair of vertices distant at most r n from each other. We establish strong laws of large numbers (LLNs) for a large class of graph parameters, evaluated for G(n, r n ) in the thermodynamic limit with nr d n = const., and also in the dense limit with nr d n → ∞, r n → 0. Examples include domination number, independence number, cliquecovering number, eternal domination number and triangle packing number. The general theory is based on certain subadditivity and superadditivity properties, and also yields LLNs for other functionals such as the minimum weight for the travelling salesman, spanning tree, matching, bipartite matching and bipartite travelling salesman problems, for a general class of weight functions with at most polynomial growth of order d − ε, under thermodynamic scaling of the distance parameter.