“…According to these results, the graphical method achieves similar outcomes in a shorter period compared to traditional methods. In a future study, we will investigate the efficiency of this graphical method to some recent bounded distributions, including Kies families [23][24][25]. abb2=c(mean(abs(alphamle-alpha))) mre1=c(mean(abs(betamle-beta)/beta)) mre2=c(mean(abs(alphamle-alpha)/alpha)) fullb= rbind(fullb,n,b1,b2) fullm= rbind(fullm,n,m1,m2) fullabb= rbind(fullabb,n,abb1,abb2) fullmre= rbind(fullmre,n,mre1,mre2) print(fark) fullb fullm fullabb fullmre "Maximum Likelihood Method" alphamle=betamle=NULL fullb=fullm=fullabb=fullmre=NULL loglk=function(par){ t=0 beta=par [1] alpha=par [2] f=(1/x)*alpha*beta*(-log(x))^(beta-1)*exp(-alpha*(log(x))^beta) t=t+sum(log(f)) return(-t) } for (j in 1:ds) { cat("\14",j) dev=F while(dev==F) { for(i in 1:n) { u=runif (1) x[i]=1/exp(exp(log(-log(u)/alpha)/beta)) } aa=try(optim(c(beta,alpha),loglk, method = "CG", hessian = T),silent = T) if (!is.character(aa))if (aa$par [1] >0& aa$par[2] >0) dev=T } betamle[j]=aa$par [1] alphamle[j]=aa$par [2] } bitis <-Sys.time() fark <-difftime(bitis, baslangic, units = "secs") print(fark) b1=mean(betamle) b2=mean(alphamle) m1=c(mean((betamle-beta)^2)) m2=c(mean((alphamle-alpha)^2)) abb1=c(mean(abs(betamle-beta))) abb2=c(mean(abs(alphamle-alpha))) mre1=c(mean(abs(betamle-beta)/beta)) mre2=c(mean(abs(alphamle-alpha)/alpha)) fullb= rbind(fullb,n,b1,b2) fullm= rbind(fullm,n,m1,m2) fullabb= rbind(fullabb,n,abb1,abb2) fullmre= rbind(fullmre,n,mre1,mre2) print(fark) fullb fullm) fullabb fullmre…”