Abstract:We introduce hyperbolic oscillation spaces and mixed fractional lifting oscillation spaces expressed in terms of hyperbolic wavelet leaders of multivariate signals on Rd, with d≥2. Contrary to Besov spaces and fractional Sobolev spaces with dominating mixed smoothness, the new spaces take into account the geometric disposition of the hyperbolic wavelet coefficients at each scale (j1,⋯,jd), and are therefore suitable for a multifractal analysis of rectangular regularity. We prove that hyperbolic oscillation spa… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.