2017
DOI: 10.1216/rmj-2017-47-8-2439
|View full text |Cite
|
Sign up to set email alerts
|

On $n$-trivial extensions of rings

Abstract: The notion of trivial extension of a ring by a module has been extensively studied 2010 Mathematics Subject Classification. primary 13A02, 13A05, 13A15, 13B99, 13E05, 13F05, 13F30; secondary 16S99, 17A99.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
19
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 16 publications
(19 citation statements)
references
References 24 publications
0
19
0
Order By: Relevance
“…Now we are in a position to give the desired example. For that we use a new ring construction recently introduced in [1].…”
Section: 2)mentioning
confidence: 99%
See 1 more Smart Citation
“…Now we are in a position to give the desired example. For that we use a new ring construction recently introduced in [1].…”
Section: 2)mentioning
confidence: 99%
“…Then x ∈ Ann(y n ) = Ann(y) by Lemma 2.2 and therefore xy = 0 . (3) ⇒(1). Let x and y be two adjacent vertices in Γ(R).…”
mentioning
confidence: 99%
“…The ring 1 in the proof of Theorem 6(2) is isomorphic to the 2-trivial extension Z⋉ 2 F ⋉F (in the sense of [26]). The theory developed in [26] can illuminate such constructions.…”
mentioning
confidence: 99%
“…The ring 1 in the proof of Theorem 6(2) is isomorphic to the 2-trivial extension Z⋉ 2 F ⋉F (in the sense of [26]). The theory developed in [26] can illuminate such constructions. For instance, the assertion that 1 is a prime ideal of 1 in the above-mentioned proof can be seen via [26,Theorem 4.7].…”
mentioning
confidence: 99%
See 1 more Smart Citation