Abstract:We study parametric inference on a rich class of hazard regression models in the presence of right‐censoring. Previous literature has reported some inferential challenges, such as multimodal or flat likelihood surfaces, in this class of models for some particular data sets. We formalize the study of these inferential problems by linking them to the concepts of near‐redundancy and practical nonidentifiability of parameters. We show that the maximum likelihood estimators of the parameters in this class of models… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.