2011
DOI: 10.4236/opj.2011.14033
|View full text |Cite
|
Sign up to set email alerts
|

On Negative Differential Mobility in Nanophotonic Device Functionality

Abstract: A negative differential mobility (NDM) of the two-dimensional carrier-gas against some proper external regulator allowing for gradual controlled modification of the nanointerfacial environment tends to occur as interwoven with nanophotonic device functionality. In this work, several instances, in our two-decade principal research, of both experimental observation and conceptual prediction concerning nanophotonics NDM are reconsidered towards outlining a global potential for the appearance of the effect

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 17 publications
0
1
0
Order By: Relevance
“…In previous studies of ours, there has been traced an approximate analogy between the Photonic Dose β Rate of Change (dη/dβ) of the Persistent Photocarrier Sheet Density η and the Average Conductivity Carrier Mobility μ [4], allowing for the expression of the Second Photonic Dose Derivative On the other hand, for the Complete Equation 16 Owing to the symmetry of the NRE with respect to interchanging its two Arguments β and γ, ψ(β) being generated by the Convolution between the Continuous, Real-valued, Symmetric, double-Argument function g(β, γ) and the Con-…”
Section: Secondo: On a Nanophotonic Response Encodermentioning
confidence: 86%
“…In previous studies of ours, there has been traced an approximate analogy between the Photonic Dose β Rate of Change (dη/dβ) of the Persistent Photocarrier Sheet Density η and the Average Conductivity Carrier Mobility μ [4], allowing for the expression of the Second Photonic Dose Derivative On the other hand, for the Complete Equation 16 Owing to the symmetry of the NRE with respect to interchanging its two Arguments β and γ, ψ(β) being generated by the Convolution between the Continuous, Real-valued, Symmetric, double-Argument function g(β, γ) and the Con-…”
Section: Secondo: On a Nanophotonic Response Encodermentioning
confidence: 86%