Following the idea of [Far16], we develop the foundations of the geometric Langlands program on the Fargues-Fontaine curve. In particular, we define a category of -adic sheaves on the stack BunG of G-bundles on the Fargues-Fontaine curve, prove a geometric Satake equivalence over the Fargues-Fontaine curve, and study the stack of L-parameters. As applications, we prove finiteness results for the cohomology of local Shimura varieties and general moduli spaces of local shtukas, and define L-parameters associated with irreducible smooth representations of G(E), a map from the spectral Bernstein center to the Bernstein center, and the spectral action of the category of perfect complexes on the stack of L-parameters on the category of -adic sheaves on BunG.
ContentsChapter I. Introduction I.1. The local Langlands correspondence I.2. The big picture I.3. The Fargues-Fontaine curve I.4. The geometry of Bun G I.5. -adic sheaves on Bun G I.6. The geometric Satake equivalence I.7. Cohomology of moduli spaces of shtuka I.8. The stack of L-parameters I.9. Construction of L-parameters I.10. The spectral action I.11. The origin of the ideas I.12. Acknowledgments I.13. Notation Chapter II. The Fargues-Fontaine curve and vector bundles V.1. Classifying stacks V.2. Étale sheaves on strata V.3. Local charts V.4. Compact generation V.5. Bernstein-Zelevinsky duality V.6. Verdier duality V.7. ULA sheaves Chapter VI. Geometric Satake VI.1. The Beilinson-Drinfeld Grassmannian VI.2. Schubert varieties VI.3. Semi-infinite orbits VI.4. Equivariant sheaves VI.5. Affine flag variety VI.6. ULA sheaves VI.7. Perverse Sheaves VI.8. Convolution VI.9. Fusion VI.10. Tannakian reconstruction VI.11. Identification of the dual group VI.12. Cartan involution Chapter VII. D (X) VII.1. Solid sheaves VII.2. Four functors VII.3. Relative homology VII.4. Relation to D ét VII.5. Dualizability VII.6. Lisse sheaves VII.7. D lis (Bun G ) Chapter VIII. L-parameter VIII.1. The stack of L-parameters VIII.2. The singularities of the moduli space VIII.3. The coarse moduli space VIII.4. Excursion operators VIII.5. Modular representation theory Chapter IX. The Hecke action IX.1. Condensed ∞-categories IX.2. Hecke operators IX.3. Cohomology of local Shimura varieties IX.4. L-parameter IX.5. The Bernstein center IX.6. Properties of the correspondence IX.7. Applications to representations of G(E) CONTENTS Chapter X. The spectral action X.1. Rational coefficients X.2. Elliptic parameters X.3. Integral coefficients Bibliography CHAPTER I