Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Let $$f_1,f_2$$ f 1 , f 2 be linearly independent solutions of $$f''+Af=0$$ f ′ ′ + A f = 0 , where the coefficient A is an analytic function in the open unit disc $${\mathbb {D}}$$ D of the complex plane $${\mathbb {C}}$$ C . It is shown that many properties of this differential equation can be described in terms of the subharmonic auxiliary function $$u=-\log \, (f_1/f_2)^{\#}$$ u = - log ( f 1 / f 2 ) # . For example, the case when $$\sup _{z\in {\mathbb {D}}} |A(z)|(1-|z|^2)^2 < \infty $$ sup z ∈ D | A ( z ) | ( 1 - | z | 2 ) 2 < ∞ and $$f_1/f_2$$ f 1 / f 2 is normal, is characterized by the condition $$\sup _{z\in {\mathbb {D}}} |\nabla u(z)|(1-|z|^2) < \infty $$ sup z ∈ D | ∇ u ( z ) | ( 1 - | z | 2 ) < ∞ . Different types of Blaschke-oscillatory equations are also described in terms of harmonic majorants of u. Even if $$f_1,f_2$$ f 1 , f 2 are bounded linearly independent solutions of $$f''+Af=0$$ f ′ ′ + A f = 0 , it is possible that $$\sup _{z\in {\mathbb {D}}} |A(z)|(1-|z|^2)^2 = \infty $$ sup z ∈ D | A ( z ) | ( 1 - | z | 2 ) 2 = ∞ or $$f_1/f_2$$ f 1 / f 2 is non-normal. These results relate to sharpness discussion of recent results in the literature, and are succeeded by a detailed analysis of differential equations with bounded solutions. Analogues for the Nevanlinna class are also considered, by taking advantage of Nevanlinna interpolating sequences. It is shown that, instead of considering solutions with prescribed zeros, it is possible to construct a bounded solution of $$f''+Af=0$$ f ′ ′ + A f = 0 in such a way that it solves an interpolation problem natural to bounded analytic functions, while $$|A(z)|^2(1-|z|^2)^3\, dm(z)$$ | A ( z ) | 2 ( 1 - | z | 2 ) 3 d m ( z ) remains to be a Carleson measure.
Let $$f_1,f_2$$ f 1 , f 2 be linearly independent solutions of $$f''+Af=0$$ f ′ ′ + A f = 0 , where the coefficient A is an analytic function in the open unit disc $${\mathbb {D}}$$ D of the complex plane $${\mathbb {C}}$$ C . It is shown that many properties of this differential equation can be described in terms of the subharmonic auxiliary function $$u=-\log \, (f_1/f_2)^{\#}$$ u = - log ( f 1 / f 2 ) # . For example, the case when $$\sup _{z\in {\mathbb {D}}} |A(z)|(1-|z|^2)^2 < \infty $$ sup z ∈ D | A ( z ) | ( 1 - | z | 2 ) 2 < ∞ and $$f_1/f_2$$ f 1 / f 2 is normal, is characterized by the condition $$\sup _{z\in {\mathbb {D}}} |\nabla u(z)|(1-|z|^2) < \infty $$ sup z ∈ D | ∇ u ( z ) | ( 1 - | z | 2 ) < ∞ . Different types of Blaschke-oscillatory equations are also described in terms of harmonic majorants of u. Even if $$f_1,f_2$$ f 1 , f 2 are bounded linearly independent solutions of $$f''+Af=0$$ f ′ ′ + A f = 0 , it is possible that $$\sup _{z\in {\mathbb {D}}} |A(z)|(1-|z|^2)^2 = \infty $$ sup z ∈ D | A ( z ) | ( 1 - | z | 2 ) 2 = ∞ or $$f_1/f_2$$ f 1 / f 2 is non-normal. These results relate to sharpness discussion of recent results in the literature, and are succeeded by a detailed analysis of differential equations with bounded solutions. Analogues for the Nevanlinna class are also considered, by taking advantage of Nevanlinna interpolating sequences. It is shown that, instead of considering solutions with prescribed zeros, it is possible to construct a bounded solution of $$f''+Af=0$$ f ′ ′ + A f = 0 in such a way that it solves an interpolation problem natural to bounded analytic functions, while $$|A(z)|^2(1-|z|^2)^3\, dm(z)$$ | A ( z ) | 2 ( 1 - | z | 2 ) 3 d m ( z ) remains to be a Carleson measure.
Abstract. We study locally univalent functions f analytic in the unit disc D of the complex plane such that |f (z)/f (z)| (1 − |z| 2 ) ≤ 1 + C(1 − |z|) holds for all z ∈ D, for some 0 < C < ∞. If C ≤ 1, then f is univalent by Becker's univalence criterion. We discover that for 1 < C < ∞ the function f remains to be univalent in certain horodiscs. Sufficient conditions which imply that f is bounded, belongs to the Bloch space or belongs to the class of normal functions, are discussed. Moreover, we consider generalizations for locally univalent harmonic functions.
Behavior of solutions of f ′′ + Af = 0 is discussed under the assumption that A is analytic in D and sup z∈D (1 − |z| 2 ) 2 |A(z)| < ∞, where D is the unit disc of the complex plane. As a main result it is shown that such differential equation may admit a non-trivial solution whose zero-sequence does not satisfy the Blaschke condition. This gives an answer to an open question in the literature.It is also proved that Λ ⊂ D is the zero-sequence of a non-trivial solution of f ′′ + Af = 0 where |A(z)| 2 (1 − |z| 2 ) 3 dm(z) is a Carleson measure if and only if Λ is uniformly separated. As an application an old result, according to which there exists a non-normal function which is uniformly locally univalent, is improved.2 > 1 then non-trivial solutions may have infinitely many zeros [13]. The condition A ∈ H ∞ 2 is equivalent to the fact that zero-sequences of non-trivial solutions of (1) are separated with respect
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.