2022
DOI: 10.1002/num.22956
|View full text |Cite
|
Sign up to set email alerts
|

On numerical study of constrained coupled shape optimization problems based on a new shape derivative method

Abstract: In this article, we deal with a numerical method for the approximation of a class of coupled shape optimization problems, which consist in minimizing an appropriate general volume cost functional subjected to coupled boundary value problems by means of a Neumann boundary transmission condition. We show the existence of the shape derivative of the cost functional and express it by means of support functions, using a new formula of shape derivative on a family of convex domains. This allows us to avoid the disad… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 20 publications
0
0
0
Order By: Relevance