2021
DOI: 10.48550/arxiv.2103.14667
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On objects dual to tree-cut decompositions

Abstract: Tree-cut width is a graph parameter introduced by Wollan [Wol15] that is an analogue of treewidth for the immersion order on graphs in the following sense: the tree-cut width of a graph is functionally equivalent to the largest size of a wall that can be found in it as an immersion. In this work we propose a variant of the definition of tree-cut width that is functionally equivalent to the original one, but for which we can state and prove a tight duality theorem relating it to naturally de ned dual objects: a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?