We use wavelets to define the Kantorovich variant of q-Baskakov type operators, and for $$1\le p< \infty$$
1
≤
p
<
∞
, we study the $$L_{p}$$
L
p
-approximation. Let $$\xi$$
ξ
be any positive constant and $$\Psi _{k}(x)$$
Ψ
k
(
x
)
be any continuous derivative function such that $$\int _{\mathbb {R}}x^{s}\Psi _{k}(x)\mathrm {d}_{q}x=0$$
∫
R
x
s
Ψ
k
(
x
)
d
q
x
=
0
where $$0\le s \le k,\;k\in \mathbb {N}$$
0
≤
s
≤
k
,
k
∈
N
, $$0<q<1$$
0
<
q
<
1
$$.$$
.
For all $$\Psi \in L_{\infty }(\mathbb {R})$$
Ψ
∈
L
∞
(
R
)
suppose the following conditions hold: (i) a finite positive $$\xi$$
ξ
exits with the property $$\sup \Psi \subset [0,\xi ],$$
sup
Ψ
⊂
[
0
,
ξ
]
,
(ii) its first k moments vanish: For $$1\le s \le k,\;k\in \mathbb {N}$$
1
≤
s
≤
k
,
k
∈
N
, we have $$\int _{\mathbb {R}}t^{s}\Psi (t)\mathrm {d}_{q}t=0$$
∫
R
t
s
Ψ
(
t
)
d
q
t
=
0
and $$\int _{\mathbb {R} }\Psi (t)\mathrm {d}_{q}t=1$$
∫
R
Ψ
(
t
)
d
q
t
=
1
. Then in the sense of Haar basis for $$0<q<1,$$
0
<
q
<
1
,
the $$q-$$
q
-
analogue of Baskakov–Kantorovich type wavelets operators are defined by $$\begin{aligned} \left( \mathcal {S}_{r,s,q}\;g\right) (x)=[r]_{q}\sum_{s =0}^{\infty }q^{s -1}B_{r,s,q}(x)\int _{\mathbb {R}}g\left( t\right) \Psi \left( q^{s-1}[r]_{q}t-[s ]_{q}\right) \mathrm {d}_{q}t. \end{aligned}$$
S
r
,
s
,
q
g
(
x
)
=
[
r
]
q
∑
s
=
0
∞
q
s
-
1
B
r
,
s
,
q
(
x
)
∫
R
g
t
Ψ
q
s
-
1
[
r
]
q
t
-
[
s
]
q
d
q
t
.