2022
DOI: 10.15826/umj.2022.2.003
|View full text |Cite
|
Sign up to set email alerts
|

On One Inequality of Different Metrics for Trigonometric Polynomials

Abstract: We study the sharp inequality between the uniform norm and \(L^p(0,\pi/2)\)-norm of polynomials in the system \(\mathscr{C}=\{\cos (2k+1)x\}_{k=0}^\infty\) of cosines with odd harmonics. We investigate the limit behavior of the best constant in this inequality with respect to the order \(n\) of polynomials as \(n\to\infty\) and provide a characterization of the extremal polynomial in the inequality for a fixed order of polynomials.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 14 publications
0
0
0
Order By: Relevance