Space-based VLBI imaging can dramatically improve state-of-the-art astronomical radio-imaging resolution by enabling significantly longer baseline distances and eliminating atmospheric-attenuation constraints on RF carrier imaging wavelength. However, smaller space-based apertures and sensitivity constraints impose challenging recorded-data downlink-rate requirements, potentially to 256 Gbit/s. Laser communications is a promising option for realizing such highrate long-distance downlinks with modest power and aperture demands. Here, we present a scalable lasercom architecture that can enable high-rate long-distance downlinks needed for enhanced space-based VLBI imaging from geosynchronous orbit (GEO).