A semigroup S is of the type in the class of the title if S has a congruence ρ such that S/ρ is a normal band (i.e. satisfies the identities x2 = x and axya = ayxa) and all ρ-classes are commutative cancellative semigroups. We consider semigroups S with such a congruence first for completely regular semigroups, then characterize the general case in several ways, including some special cases. When S is an order in a normal band of abelian groups Q, we study the restrictions of Green's relations on Q to S. The paper concludes with the discussion of a free semigroup in the title on two generators.