In target monitoring problem, it is generally assumed that the whole target object can be monitored by a single sensor if the target falls within its sensing range. Unfortunately, this assumption becomes invalid when the target object is very large that a sensor can only monitor part of it. In this paper, we study the perimeter coverage problem where the perimeter of a big object needs to be monitored, but each sensor can only cover a single continuous portion of the perimeter. We describe how to schedule the sensors so as to maximize the network lifetime in this problem. We formally prove that the perimeter coverage scheduling problem is NPhard in general. However, polynomial time solution exists in some special cases. We further identify the sufficient conditions for a scheduling algorithm to be a 2-approximation solution to the general problem, and propose a simple distributed 2-approximation solution with a small message overhead.