Polynomial factorization over a field is very useful in algebraic number theory, in extensions of valuations, etc. For valued field extensions, the determination of irreducible polynomials was the focus of interest of many authors. In 1850, Eisenstein gave one of the most popular criterion to decide on irreducibility of a polynomial over Q. A criterion which was generalized in 1906 by Dumas. In 2008, R. Brown gave what is known to be the most general version of Eisenstein-Schönemann irreducibility criterion. Thanks to MacLane theory, key polynomials play a key role to extend absolute values. In this chapter, we give a sufficient condition on any monic plynomial to be a key polynomial of an absolute value, an irreducibly criterion will be given, and for any simple algebraic extension L=Kα, we give a method to describe all absolute values of L extending ∣∣, where K is a discrete rank one valued field.