2020
DOI: 10.1515/jgth-2019-0091
|View full text |Cite
|
Sign up to set email alerts
|

On quasiprimitive edge-transitive graphs of odd order and twice prime valency

Abstract: A graph is edge-transitive if its automorphism group acts transitively on the edge set. In this paper, we investigate the automorphism groups of edge-transitive graphs of odd order and twice prime valency. Let {\varGamma} be a connected graph of odd order and twice prime valency, and let G be a subgroup of the automorphism group of {\varGamma}. In the case where G acts transitively on the edge set and quasiprimitively on the vertex set of {\varGamma}, we prove that either G is almost simple, or G is a primitiv… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?