Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation - ISSAC '97 1997
DOI: 10.1145/258726.258776
|View full text |Cite
|
Sign up to set email alerts
|

On randomized Lanczos algorithms

Abstract: Las Vegas algorithms that are basedon Lanczos's method for solving symmetric linear systems are presented and analyzed. These arecompared toasimilar randomized Lanczos algorithm that has been used for integer factorization, and to the (provably reliable) algorithm of Wiedemann.The analysis suggests that our Lanczos algorithms are preferable to several versions of Wiedemann's method for computations over large fields, especially for certain symmetric matrix computations.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
24
0
1

Year Published

2001
2001
2020
2020

Publication Types

Select...
4
4

Relationship

1
7

Authors

Journals

citations
Cited by 35 publications
(26 citation statements)
references
References 15 publications
1
24
0
1
Order By: Relevance
“…On the other hand, then there is no way to beat sparse-matrix methods for finding a unique solution to a sparse system of equations. Standard estimates for Lanczos, Conjugate Gradients or Wiedemann methods ( [17,24,38]) resemble…”
Section: A Framework For Estimating Security Levelsmentioning
confidence: 99%
“…On the other hand, then there is no way to beat sparse-matrix methods for finding a unique solution to a sparse system of equations. Standard estimates for Lanczos, Conjugate Gradients or Wiedemann methods ( [17,24,38]) resemble…”
Section: A Framework For Estimating Security Levelsmentioning
confidence: 99%
“…The normality of the remainder sequence associated to a given matrix A essentially comes from the genericity of the projections. This may be partly seen in the scalar case for Lanczos algorithm from (Eberly & Kaltofen 1997, Lemma 4.1), cc 13 (2004) (Eberly 2002) or (Kaltofen & Lee 2003; and in the block case from (Kaltofen 1995, Proposition 3) or (Villard 1997b, Proposition 6.1).…”
Section: Is Satisfied If and Only If There Exist Matrices S And T Of mentioning
confidence: 94%
“…В случае если алгоритм на каком-то шаге не срабатывает и если при этом решение системы (1) не лежит в линейной оболочке уже построенных векторов, можно начать сначала с другой матрицей B или рандомизировать матрицу A, применяя соображения описанные в [2,3].…”
Section: м а черепневunclassified