This paper proposes a built-in self-test (BIST) scheme for noise-tolerant testing of a digital-to-analogue converter (DAC). The proposed BIST calculates the differences in output voltages between a DAC and test modules. These differences are used as the inputs of an integrator that determines integral nonlinearity (INL). The proposed method has an advantage of random noise cancelation and achieves a higher test accuracy than do the conventional BIST methods. The simulation results show high standard noise-immunity and fault coverage for the proposed method.