Abstract:We present a method to study asymptotically linear degenerate problems with sublinear unbounded non-linearities. The method is based on the uniform convergence to zero of projections of non-linearity increments onto some finite-dimensional spaces. Such convergence was used for the analysis of resonant equations with bounded non-linearities by many authors. The unboundedness of nonlinear terms complicates essentially the analysis of most problems: existence results, approximate methods, systems with parameters,… Show more
“…The passage to equations with unbounded sublinear operators F is one possible direction of generalization of our results. In this passage, the main problem in applications is to prove the asymptotic homogeneity; if F is a composition operator, then the methods in [8] can be used. One can consider nonlinearities asymptotically homogeneous in a weaker sense with discontinuous asymptotic limit, say, by using the technique in [9].…”
Section: Close Theorems and Remarksmentioning
confidence: 99%
“…Thus Theorems 1 and 2 supplement each other. Note that in Theorem 1 one additionally assumes the asymptotic homogeneity of the operator F 1 (x, λ 0 ) and the validity of the representations (8).…”
We suggest a method for studying asymptotically linear vector fields with a parameter. The method permits one to prove theorems on asymptotic bifurcation points (bifurcation points at infinity) for the case of double degeneration of the principal linear part. We single out a class of fields that have more than two unbounded branches of singular points in a neighborhood of a bifurcation point. Some applications of the general theorems to bifurcations of periodic solutions and subharmonics as well as to the two-point boundary value problem are given.
“…The passage to equations with unbounded sublinear operators F is one possible direction of generalization of our results. In this passage, the main problem in applications is to prove the asymptotic homogeneity; if F is a composition operator, then the methods in [8] can be used. One can consider nonlinearities asymptotically homogeneous in a weaker sense with discontinuous asymptotic limit, say, by using the technique in [9].…”
Section: Close Theorems and Remarksmentioning
confidence: 99%
“…Thus Theorems 1 and 2 supplement each other. Note that in Theorem 1 one additionally assumes the asymptotic homogeneity of the operator F 1 (x, λ 0 ) and the validity of the representations (8).…”
We suggest a method for studying asymptotically linear vector fields with a parameter. The method permits one to prove theorems on asymptotic bifurcation points (bifurcation points at infinity) for the case of double degeneration of the principal linear part. We single out a class of fields that have more than two unbounded branches of singular points in a neighborhood of a bifurcation point. Some applications of the general theorems to bifurcations of periodic solutions and subharmonics as well as to the two-point boundary value problem are given.
“…Если F 0 (λ 0 ) ∈ E ⊥ (как в теореме 1), то η ≡ 0 и теорема 2 оказывается неприменимой, т. е. теоремы 1 и 2 дополняют друг друга. Отметим, что в теореме 1 дополнительно предполагается асимптотическая однородность оператора F 1 (x, λ 0 ) и справедливость представлений (8).…”
Section: основная теорема предположим что на инвариантной относительноunclassified
“…Одно из возможных направлений развития сформулированных результатов -переход к уравнениям с неограниченными сублинейными операторами F . При таком переходе основная проблема в приложениях состоит в доказательстве асимптотической однородности; если F -оператор суперпозиции, то можно использовать методы из [8]. Можно рассматривать асимптотически однородные в более слабом смысле нелинейности с разрывным асимптотическим пределом, например, используя технику из […”
Section: основная теорема предположим что на инвариантной относительноunclassified
Будем называть решениями уравнения (1) и векторы x ∈ H, и пары (x, λ) ∈ H × Λ; из контекста всегда ясно, о чем идет речь. 2) То есть величина, обратная собственному значению.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.