This paper is concerned with the analysis of optimization procedures for optimal experiment design for locally affine Takagi-Sugeno (TS) fuzzy models based on the Fisher Information Matrix (FIM). The FIM is used to estimate the covariance matrix of a parameter estimate. It depends on the model parameters as well as the regression variables. Due to the dependency on the model parameters good initial models are required. Since the FIM is a matrix, a scalar measure of the FIM is optimized. Different measures and optimization goals are investigated in three case studies.