2021
DOI: 10.1142/s0129167x21500798
|View full text |Cite
|
Sign up to set email alerts
|

On second non-HLC degree of closed symplectic manifold

Abstract: In this note, we show that for a closed almost-Kähler manifold [Formula: see text] with the almost complex structure [Formula: see text] satisfies [Formula: see text] the space of de Rham harmonic forms is contained in the space of symplectic-Bott–Chern harmonic forms. In particular, suppose that [Formula: see text] is four-dimensional, if the self-dual Betti number [Formula: see text], then we prove that the second non-HLC degree measures the gap between the de Rham and the symplectic-Bott–Chern harmonic form… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?