Abstract:In this note, we show that for a closed almost-Kähler manifold [Formula: see text] with the almost complex structure [Formula: see text] satisfies [Formula: see text] the space of de Rham harmonic forms is contained in the space of symplectic-Bott–Chern harmonic forms. In particular, suppose that [Formula: see text] is four-dimensional, if the self-dual Betti number [Formula: see text], then we prove that the second non-HLC degree measures the gap between the de Rham and the symplectic-Bott–Chern harmonic form… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.