Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, we introduce generalized difference weak sequence space classes by utilizing the difference operator Δ ı ȷ \Delta^{\jmath}_{\imath} and the de la Vallée–Poussin mean, denoted as [ ( V , λ ) w , Δ ı ȷ ] m [(\mathscr{V},\lambda)_{w},\Delta^{\jmath}_{\imath}]_{m} for m = 0 m=0 , 1, and ∞. Further, we explore some algebraic and topological properties of these spaces, including their nature as linear, normed, Banach, and BK spaces. Additionally, we examine properties such as solidity, symmetry, and monotonicity. Finally, we define and establish some inclusion relations among generalized difference weak statistical convergence, generalized difference weak 𝜆-statistical convergence, and generalized difference weak [ V , λ ] [\mathscr{V},\lambda] -convergence.
In this paper, we introduce generalized difference weak sequence space classes by utilizing the difference operator Δ ı ȷ \Delta^{\jmath}_{\imath} and the de la Vallée–Poussin mean, denoted as [ ( V , λ ) w , Δ ı ȷ ] m [(\mathscr{V},\lambda)_{w},\Delta^{\jmath}_{\imath}]_{m} for m = 0 m=0 , 1, and ∞. Further, we explore some algebraic and topological properties of these spaces, including their nature as linear, normed, Banach, and BK spaces. Additionally, we examine properties such as solidity, symmetry, and monotonicity. Finally, we define and establish some inclusion relations among generalized difference weak statistical convergence, generalized difference weak 𝜆-statistical convergence, and generalized difference weak [ V , λ ] [\mathscr{V},\lambda] -convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.