In this article we introduce the generalized Fibonacci difference operator $\mathsf{F}(\mathsf{B})$
F
(
B
)
by the composition of a Fibonacci band matrix and a triple band matrix $\mathsf{B}(x,y,z)$
B
(
x
,
y
,
z
)
and study the spaces $\ell _{k}( \mathsf{F}(\mathsf{B}))$
ℓ
k
(
F
(
B
)
)
and $\ell _{\infty }(\mathsf{F}(\mathsf{B}))$
ℓ
∞
(
F
(
B
)
)
. We exhibit certain topological properties, construct a Schauder basis and determine the Köthe–Toeplitz duals of the new spaces. Furthermore, we characterize certain classes of matrix mappings from the spaces $\ell _{k}(\mathsf{F}(\mathsf{B}))$
ℓ
k
(
F
(
B
)
)
and $\ell _{\infty }(\mathsf{F}(\mathsf{B}))$
ℓ
∞
(
F
(
B
)
)
to space $\mathsf{Y}\in \{\ell _{\infty },c_{0},c,\ell _{1},cs_{0},cs,bs\}$
Y
∈
{
ℓ
∞
,
c
0
,
c
,
ℓ
1
,
c
s
0
,
c
s
,
b
s
}
and obtain the necessary and sufficient condition for a matrix operator to be compact from the spaces $\ell _{k}(\mathsf{F}(\mathsf{B}))$
ℓ
k
(
F
(
B
)
)
and $\ell _{\infty }(\mathsf{F}(\mathsf{B}))$
ℓ
∞
(
F
(
B
)
)
to $\mathsf{Y}\in \{ \ell _{\infty }, c, c_{0}, \ell _{1},cs_{0},cs,bs\} $
Y
∈
{
ℓ
∞
,
c
,
c
0
,
ℓ
1
,
c
s
0
,
c
s
,
b
s
}
using the Hausdorff measure of non-compactness.