2019
DOI: 10.13108/2019-11-3-99
|View full text |Cite
|
Sign up to set email alerts
|

On series of Darboux integrable discrete equations on square lattice

Abstract: We present a series of Darboux integrable discrete equations on the square lattice. Equations of the series are numbered with natural numbers . All the equations have a first integral of the first order in one of directions of the two-dimensional lattice. The minimal order of a first integral in the other direction is equal to 3 for an equation with the number .In the cases = 1, 2, 3 we show that those equations are integrable in quadratures. More precisely, we construct their general solutions in terms of the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
3
0
6

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(9 citation statements)
references
References 16 publications
0
3
0
6
Order By: Relevance
“…где a n = b + cn как в (6). При N = 2, β N = −1 высшая симметрия второго порядка, соответствующая (7), имеет вид:…”
Section: первая модификацияunclassified
See 3 more Smart Citations
“…где a n = b + cn как в (6). При N = 2, β N = −1 высшая симметрия второго порядка, соответствующая (7), имеет вид:…”
Section: первая модификацияunclassified
“…Тогда уравнение (37) легко записывается в терминах Y n,m . При N = 2, β N = −1 высшая симметрия второго порядка, соответствующая (7), имеет вид: При N = 3 высшая симметрия третьего порядка, соответствующая (8), имеет вид:…”
Section: вторая модификацияunclassified
See 2 more Smart Citations
“…On the other hand side, the concept of Darboux integrability is widespread and important in itself; therefore, its generalization to differential-difference models is of independent interest (see [8], [9], [10], [11], [12]). Fundamental ideas in the study of the problem of constructing in closed form general solution of partial differential equations of hyperbolic type go back to the classical works of Laplace, Liouville, Lie, Darboux, Goursat, Vessio, and others.…”
Section: Introductionmentioning
confidence: 99%