The current COVID-19 pandemic that is caused by SARS-CoV-2 has led all the people around the globe to implement preventive measures such as environmental cleaning using alcohol-based materials, and social distancing in order to prevent and minimize viral transmission via fomites. The role of environmental surface contamination in viral transmission in within hospital wards is still debatable, especially considering the spread of new variants of the virus in the world. The present comprehensive study aims to investigate environmental surface contamination in different wards of a hospital as well as the efficacy of two common disinfectants for virus inactivation, and tries to produce an estimate of plastic residue pollution as an environmental side effect of the pandemic. With regard to environmental surface contamination, 76 samples were taken from different wards of the hospital, from which 40 were positive. These samples were taken from contaminated environmental surfaces such as patient bed handles, the nursing station, toilet door handles, cell phones, patient toilet sinks, toilet bowls, and patient's pillows, which are regularly-touched surfaces and can pose a high risk for transmission of the virus. The number of positive samples also reveals that SARS-CoV-2 can survive on inanimate surfaces after disinfection by ethanol 70 % and sodium hypochlorite (0.001 %). The results correspond to the time that the VOC 202012/01 (lineage B.1.1.7) had emerged in the hospital and this should be considered that this variant could possibly have different traits, characteristics, and level of persistence in the environment. The plastic waste as an environmental side effect of the pandemic was also investigated and it was confirmed that the amount of plastic residue for a single (RT) PCR confirmatory test for COVID-19 diagnosis is 821.778 g of plastic residue/test. As a result, it is recommended that for improving plastic waste management programs, considering challenges such as minimizing plastic waste pollution, optimization of gas control technologies in incinerators, process redesign, reduction of single-use plastics and PPE, etc. Is of utmost importance.