2020
DOI: 10.1017/etds.2019.110
|View full text |Cite
|
Sign up to set email alerts
|

On slow escaping and non-escaping points of quasimeromorphic mappings

Abstract: We show that for any quasimeromorphic mapping with an essential singularity at infinity, there exist points whose iterates tend to infinity arbitrarily slowly. This extends a result by Nicks for quasiregular mappings, and Rippon and Stallard for transcendental meromorphic functions on the complex plane. We further establish a new result for the growth rate of quasiregular mappings near an essential singularity, and briefly extend some results regarding the bounded orbit set and the bungee set to the quasimerom… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?