The primary goal of this paper is to present and study an inertial projection algorithm for solving the split best proximity and mixed equilibrium problems. We find a solution of the best proximity problem in such a way that its image under a bounded linear operator is the solution of the mixed equilibrium problem under the setting of real Hilbert spaces. We construct an iterative algorithm for the proposed problem and prove a weak convergence theorem. Moreover, we deduce some consequences from the main convergence result. Finally, a numerical experiment is presented to demonstrate the convergence analysis of our algorithm. The methodology and results presented in this work improve and unify some previously published findings in this field.