2010
DOI: 10.1007/s00028-010-0087-6
|View full text |Cite
|
Sign up to set email alerts
|

On some classes of inverse problems for parabolic and elliptic equations

Abstract: We study solvability of inverse problems of finding the right-hand side together with a solution itself for vector-valued parabolic and elliptic equations. The usual boundary conditions are supplemented with the overdetermination conditions that are the values of a solution on some system of surfaces.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
5
0
1

Year Published

2013
2013
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 13 publications
(6 citation statements)
references
References 25 publications
0
5
0
1
Order By: Relevance
“…2 in [25]; it is similar to that in the proof of Theorem 1.1 in [9] or in the proof of Theorem 3.1 in [26].…”
Section: Preliminariesmentioning
confidence: 64%
See 1 more Smart Citation
“…2 in [25]; it is similar to that in the proof of Theorem 1.1 in [9] or in the proof of Theorem 3.1 in [26].…”
Section: Preliminariesmentioning
confidence: 64%
“…Generally speaking our reference to Theorem 3.1 in [26] is not exact, since the case of dierent boundary conditions on dierent connectedness components of the boundary is not treated there. However the proof of Theorem 3.1 remains valid in this case as well, since it is based on a partition of unity and local considerations.…”
Section: Preliminariesmentioning
confidence: 99%
“…In view of the method, all coefficients also are independent of some spacial variables. More complete results for the problems (1)-( 3) can be found in [14][15][16][17], where the well-posedness of the inverse problems in question is established for the case of the additional data are the values of a solution on some spacial manifolds or at some collection of points. However, in these articles   ,1 c t x  except for the article [15], where     , c t x c t  in the case of the pointwise ovedetermination.…”
Section: Introductionmentioning
confidence: 99%
“…В одномерном случае, когда , такие линейная и нелинейная задачи были изучены в пространствах Гельдера в [1]. Можно отметить работы [2], [3], где были рассмотрены задачи вида (1), (2) в общей постановке. В данной работе при выполнении условия параболичности приводятся оценки устойчивости решений задачи (1)-(3) в пространствах Соболева и получена также локальная по времени корректность, то есть доказано существование, единственность и непрерывная зависимость решений от данных задачи.…”
Section: Introductionunclassified