1973
DOI: 10.2140/pjm.1973.45.525
|View full text |Cite
|
Sign up to set email alerts
|

On some mean values associated with a randomly selected simplex in a convex set

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

1
38
0
5

Year Published

1974
1974
2022
2022

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 75 publications
(44 citation statements)
references
References 7 publications
1
38
0
5
Order By: Relevance
“…Under these assumptions, (4) has been proved by Groemer [11] and (5) by Macbeath [20]. For s = 1 the value of E(B) has been computed explicitly by Kingman [18].…”
Section: Main Theorem and Corollariesmentioning
confidence: 96%
See 1 more Smart Citation
“…Under these assumptions, (4) has been proved by Groemer [11] and (5) by Macbeath [20]. For s = 1 the value of E(B) has been computed explicitly by Kingman [18].…”
Section: Main Theorem and Corollariesmentioning
confidence: 96%
“…Again it can be shown that the ellipsoids (and only these) have this property (Groemer [11] ). The mean value problem is more general since/~(K) = tim ~ (/zr(K)) 1/'.…”
mentioning
confidence: 97%
“…Ke~ ist (aueh ftir n=2) nach BRu~N [8] genau dann ein Ellipsoid, wenn fiir jede Parallelschar yon Sehnen die Mittelpunkte in einer Hyperebene liegen. Altarnativbewaise d~von findet man in [5], [6], [10], [14], [23], Verschgrfungen bei DA:~ZE~--LAUG-WITZ--LE:SZ [11] und G~vB~ [15]. Die Ergebnisse in [17], [26] lassen sieh leieht auf das Brunnsche t~esultat zuriickfiihren.…”
Section: H Nicht Parallel G Bd (K -~ G) N Bd K ) H N Bd (K -F G) (2)unclassified
“…Wegen oeintK, (14), (18), (15), (16), (20), ~*, (15), (]8), (18), (16), (15), (20) gilt K* ~-G =-cl cony (K*w G) -----(K r~ G*)* -~ (K hE)* = : ((g -~ G (E)) n E)* -----cl cony ((K -~ G (E))* w E*) : = (K -~ G (E))* + E* : (cl cony (K w G (E)))* + G = --(K* r~ (G (E))*) -~ a --(K* n E (G)) + G. …”
mentioning
confidence: 99%
“…In 1974 Groemer [11,12] generalized this statement to d-dimensional convex bodies C of volume one and an arbitrary number n of points. The value of this minimum is known for d + 1 points in a d-dimensional ellipsoid (Kingman [13]) and for an arbitrary number of points in dimensions d = 2 and d = 3 (cf.…”
mentioning
confidence: 99%