In this article, we consider a nonlinear elliptic unilateral equation whose model is
−
∑
i
=
1
N
∂
i
σ
i
(
x
,
u
,
∇
u
)
+
L
(
x
,
u
,
∇
u
)
+
N
(
x
,
u
,
∇
u
)
=
μ
−
div
ϕ
(
u
)
in
Ω
.
-\mathop{\sum }\limits_{i=1}^{N}{\partial }^{i}{\sigma }_{i}\left(x,u,\nabla u)+L\left(x,u,\nabla u)+N\left(x,u,\nabla u)=\mu -{\rm{div}}\phi \left(u)\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega .
We prove the existence of entropy solutions for the aforementioned equation in the anisotropic Sobolev space, under the hypotheses,
μ
=
f
−
div
F
\mu =f-{\rm{div}}F
belongs to
L
1
(
Ω
)
+
W
−
1
,
p
′
(
Ω
)
{L}^{1}\left(\Omega )+{W}^{-1,{p}^{^{\prime} }}\left(\Omega )
. The nonlinear terms
L
(
x
,
s
,
∇
u
)
L\left(x,s,\nabla u)
satisfy the sign and growth conditions, and
N
(
x
,
s
,
∇
u
)
N\left(x,s,\nabla u)
verifies only the growth conditions.