2022
DOI: 10.52737/18291163-2020.12.10-1-27
|View full text |Cite
|
Sign up to set email alerts
|

On some quasi-periodic approximations

Abstract: Trigonometric approximation or interpolation of a non-smooth function on a finite interval has poor convergence properties. This is especially true for discontinuous functions. The case of infinitely differentiable but non-periodic functions with discontinuous periodic extensions onto the real axis has attracted interest from many researchers. In a series of works, we discussed an approach based on quasi-periodic trigonometric basis functions whose periods are slightly bigger than the length of the approximati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 24 publications
0
0
0
Order By: Relevance
“…Это более корректный вариант, однако он усложняет модель, зависит от ее свойств и спецификации и не является универсальным. Применительно к задаче оценки кривой доходностей смотрите, например, работы [6][7][8].…”
Section: обзор литературыunclassified
“…Это более корректный вариант, однако он усложняет модель, зависит от ее свойств и спецификации и не является универсальным. Применительно к задаче оценки кривой доходностей смотрите, например, работы [6][7][8].…”
Section: обзор литературыunclassified
“…Over the last two decades, several Armenian researchers have made significant contributions to the Lanczos approach. For instance, the works of A. Nersessian and A. Poghosyan addressed the main issue of some alternatives to the quasi-Bernoulli series in [67,[87][88][89][90][91][92], such as the quasi-polynomial series, the Fourier-Pade series, the trigonometric interpolations series, and the quasi-polynomial Pade series. Similarly, A. Nersessian studied a framework based on a biorthogonal system and adaptive algorithms with a strong potential for accelerating the convergence of Fourier series due to an over-convergence phenomenon [93][94][95][96].…”
Section: Introductionmentioning
confidence: 99%