In this paper, we consider the condition $$\sum _{i=0}^{n+1}\varphi _i(r_ix+q_iy)\in {\mathbb {Z}}$$
∑
i
=
0
n
+
1
φ
i
(
r
i
x
+
q
i
y
)
∈
Z
for real valued functions defined on a linear space V. We derive necessary and sufficient conditions for functions satisfying this condition to be decent in the following sense: there exist functions $$f_i:V\rightarrow {\mathbb {R}}$$
f
i
:
V
→
R
, $$g_i:V\rightarrow {\mathbb {Z}}$$
g
i
:
V
→
Z
such that $$\varphi _i=f_i+g_i$$
φ
i
=
f
i
+
g
i
, $$(i=0,\dots ,n+1)$$
(
i
=
0
,
⋯
,
n
+
1
)
and $$\sum _{i=0}^{n+1}f_i(r_ix+q_iy)=0$$
∑
i
=
0
n
+
1
f
i
(
r
i
x
+
q
i
y
)
=
0
for all $$x, y\in V$$
x
,
y
∈
V
.