On Splitting Complete Manifolds via Infinity Harmonic Functions
Damião J Araújo,
Marco Magliaro,
Luciano Mari
et al.
Abstract:In this paper, we prove some splitting results for manifolds supporting a non-constant infinity harmonic function which has at most linear growth on one side. Manifolds with non-negative Ricci or sectional curvature are considered. In dimension $2$, we extend Savin’s theorem on Lipschitz infinity harmonic functions in the plane to every surface with non-negative sectional curvature.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.