Abstract:We study the sample complexity of learning a high-dimensional simplex from a set of points uniformly sampled from its interior. Learning of simplices is a long studied problem in computer science and has applications in computational biology and remote sensing, mostly under the name of 'spectral unmixing'. We theoretically show that a sufficient sample complexity for reliable learning of a K-dimensional simplex is O K 2 log K , which yields a significant improvement over the existing bounds. Based on our new t… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.