Recently, networks have shifted from traditional in-house servers to third-party-managed cloud platforms due to its cost-effectiveness and increased accessibility toward its management. However, the network remains reactive, with less accountability and oversight of its overall security. Several emerging technologies have restructured our approach to the security of cloud networks; one such approach is the zero-trust network architecture (ZTNA), where no entity is implicitly trusted in the network, regardless of its origin or scope of access. The network rewards trusted behaviour and proactively predicts threats based on its users’ behaviour. The zero-trust network architecture is still at a nascent stage, and there are many frameworks and models to follow. The primary focus of this survey is to compare the novel requirement-specific features used by state-of-the-art research models for zero-trust cloud networks. In this manner, the features are categorized across nine parameters into three main types: zero-trust-based cloud network models, frameworks and proofs-of-concept. ZTNA, when wholly realized, enables network administrators to tackle critical issues such as how to inhibit internal and external cyber threats, enhance the visibility of the network, automate the calculation of trust for network entities and orchestrate security for users. The paper further focuses on domain-specific issues plaguing modern cloud computing networks, which leverage choosing and implementing features necessary for future networks and incorporate intelligent security orchestration, automation and response. The paper also discusses challenges associated with cloud platforms and requirements for migrating to zero-trust architecture. Finally, possible future research directions are discussed, wherein new technologies can be incorporated into the ZTA to build robust trust-based enterprise networks deployed in the cloud.