Proceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation 2015
DOI: 10.1145/2755996.2756675
|View full text |Cite
|
Sign up to set email alerts
|

On þ-adic Expansions of Algebraic Integers

Abstract: It is well known that every rational integer has a finite or periodic p-adic expansion. In this paper a more general notion of p-adic expansion is introduced for algebraic integers, where given a number field K and a principal prime ideal p in K, a different choice of generator for p is allowed in each stage of the expansion. With the notion of p-adic expansion, we prove that there is always a finite or periodic p-adic expansion for every algebraic integer. Moreover, we prove a bound on the periodicity of the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?