“…During their earthward propagation, strong particle and wave activity can occur in the vicinity of the DFs. For example, ambient ions can be efficiently accelerated due to reflection ahead of the DFs (e.g., Drake et al, 2014;Zhou et al, 2010Zhou et al, , 2011Zhou et al, , 2018; electrons can also be accelerated up to suprathermal energies inside the flux pileup regions (e.g., Fu et al, 2011;Khotyaintsev et al, 2011) or the dipolarizing flux bundles (e.g., behind the DFs, due to adiabatic processes (e.g., Birn et al, 2013;Fu et al, 2011;Gabrielse et al, 2012;Liu et al, 2009;Lu et al, 2016;Pan et al, 2012;Wu et al, 2013) or nonadiabatic processes (e.g., Huang et al, 2012;Hwang et al, 2014;Liu et al, 2016;Panov et al, 2013); several types of waves, such as lower hybrid drift waves (e.g., Khotyaintsev et al, 2011;Zhou et al, 2009), broadband high-frequency electrostatic waves (Yang et al, 2017) and whistler waves (e.g., Breuillard et al, 2016;Fu et al, 2014), have been widely reported near the DFs; pitch angle distribution (PAD) of suprathermal electrons can evolve dramatically around DFs (e.g., Fu, Khotyaintsev, Vaivads, André, Sergeev, et al, 2012;Liu, Fu, Xu, Wang, et al, 2017;Runov et al, 2013); Strong energy conversion can happen at the DF (e.g., Angelopoulos et al, 2013;Huang et al, 2015;Khotyaintsev et al, 2017;Lapenta et al, 2014;Liu et al, 2018;Yao et al, 2017), due to intense currents and electric fields.…”