On the Acceleration of Deep Neural Network Inference using Quantized Compressed Sensing
Meshia Cédric Oveneke
Abstract:Accelerating deep neural network (DNN) inference on resource-limited devices is one of the most important barriers to ensuring a wider and more inclusive adoption. To alleviate this, DNN binary quantization for faster convolution and memory savings is one of the most promising strategies despite its serious drop in accuracy. The present paper therefore proposes a novel binary quantization function based on quantized compressed sensing (QCS). Theoretical arguments conjecture that our proposal preserves the prac… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.