On The Adjoint of Bounded Operators On A Semi-Inner Product Space
R. Respitawulan,
Qori Y. Pangestu,
Fajar Yuliawan
et al.
Abstract:The notion of semi-inner product (SIP) spaces is a generalization of inner product (IP) spaces notion by reducing the positive definite property of the product to positive semi-definite. As in IP spaces, the existence of an adjoint of a linear operator on a SIP space is guaranteed when the operator is bounded. However, in contrast, a bounded linear operator on SIP space can have more than one adjoint linear operators. In this article we give an alternative proof of those results using the generalized Riesz Rep… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.