2023
DOI: 10.36753/mathenot.1117985
|View full text |Cite
|
Sign up to set email alerts
|

On the Algebra of Interval Vectors

Abstract: In this study, we examine some important subspaces by showing that the set of n-dimensional interval vectors is a quasilinear space. By defining the concept of dimensions in these spaces, we show that the set of $n$-dimensional interval vectors is actually a $(n_{r},n_{s})$-dimensional quasilinear space and any quasilinear space is $\left( n_{r},0_{s}\right) $-dimensional if and only if it is $n$-dimensional linear space. We also give examples of $(2_{r},0_{s})$ and $(0_{r},2_{s})$-dimensional subspaces. We de… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?