From a finite-time thermodynamics perspective, a thermoeconomic analysis of a Novikov model employing a linear heat transfer law is carried out. A new component in the cost function is proposed to examine its relationship with waste management while operating in the maximum power, ecological, and efficient power regimes. The methodology consists of optimizing the profit function by including our new waste management cost function, leveraging the same method used by DeVos (“Endoreversible thermoeconomics,” Energy Convers. Manage., vol. 36, pp. 1–5, 1995) and Pacheco et al. (“Thermoeconomic optimization of an irreversible novikov plant model under different regimes of performance,” Entropy, vol. 19, p. 118, 2017). Searching for the optimal thermoeconomic efficiencies for the ecological case a novel numerical method developed by the corresponding author (A. M. Ares de Parga-Regalado, “Analytical approximation of optimal thermoeconomic efficiencies for a novikov engine with a Stefan–Boltzmann heat transfer law,” Results Phys., 2023) is used. Analytical expressions for the optimal efficiencies are obtained, and the impact of the proposed term on these values is investigated.