An asphalt mastic has thixotropic characteristics that significantly influence its fatigue and healing performance. Therefore, understanding the thixotropy of an asphalt mastic is clearly of great importance. However, research in this area is still in the early stages. This study focuses on self-heating as one of the biasing performances of asphalt material by analyzing the viscosity, stress, and hysteresis loops the of asphalt mastics under cyclic shear loading. Twelve types of asphalt mastics fabricated with asphalt, as well as different types of mineral filler, were selected to examine thixotropy. In addition, the filler/asphalt ratio was examined via the hysteresis technique to analyze the hysteresis loop and the viscosity–shear rate. The thixotropic potential function was also studied from the energy viewpoint. The results show that asphalt mastics with different asphalt binders, mineral fillers, and filler volume fractions showed hysteresis loops for shear stress versus shear rate diagrams. With an increase in the loading times of the cyclic load, the area of the hysteresis loop gradually decreases, and the hysteresis area most likely features a relatively stable value. The thixotropy of the asphalt can be significantly reduced by adding filler, and different types of mineral filler can slightly influence the thixotropy. The viscosity decreases with an increase in the shear rate, and it gradually recovers with a decrease in the shear rate. The greater the filler/asphalt ratio, the greater the viscosity, and the faster the viscosity’s descent is with the prolongation of time. Due to the existence of a higher amount of filler content, the recovery of a viscosity crack is more difficult. For asphalt mastics with high filler/asphalt ratios, the thixotropic mechanism can be explained via particle agglomeration and the depolymerization theory. For asphalt mastics with low and medium filler/asphalt ratios, the thixotropic mechanism can be explained via the particle chain theory. The damage and recovery of the internal structure of an asphalt mastic can be characterized by the structural failure potential function and the structural recovery potential function, respectively.