Kelly's Criterion is well known among gamblers and investors as a method for maximizing the returns one would expect to observe over long periods of betting or investing. These ideas are conspicuously absent from portfolio optimization problems in the financial and automation literature. This paper will show how Kelly's Criterion can be incorporated into standard portfolio optimization models. The model developed here combines risk and return into a single objective function by incorporating a risk parameter. This model is then solved for a portfolio of 10 stocks from a major stock exchange using a differential evolution algorithm. Monte Carlo calculations are used to verify the accuracy of the results obtained from differential evolution. The results show that evolutionary algorithms can be successfully applied to solve a portfolio optimization problem where returns are calculated by applying Kelly's Criterion to each of the assets in the portfolio.