By introducing diffeomorphism and local Lorentz gauge invariant holonomy fields, we study in the recent article [S.-S. Xue, Phys. Rev. D82 (2010) 064039] the quantum EinsteinCartan gravity in the framework of Regge calculus. On the basis of strong coupling expansion, mean-field approximation and dynamical equations satisfied by holonomy fields, we present in this Letter calculations and discussions to show the phase structure of the quantum Einstein-Cartan gravity, (i) the order phase: long-range condensations of holonomy fields in strong gauge couplings; (ii) the disorder phase: short-range fluctuations of holonomy fields in weak gauge couplings. According to the competition of the activation energy of holonomy fields and their entropy, we give a simple estimate of the possible ultra-violet critical point and correlation length for the second-order phase transition from the order phase to disorder one. At this critical point, we discuss whether the continuum field theory of quantum Einstein-Cartan gravity can be possibly approached when the macroscopic correlation length of holonomy field condensations is much larger than the Planck length.