Abstract:In this paper, we consider the non-existence and existence of solutions for a generalized quasilinear Schrödinger equation with a Kirchhoff-type perturbation. When the non-linearity h(u) shows critical or supercritical growth at infinity, the non-existence result for a quasilinear Schrödinger equation is proved via the Pohožaev identity. If h(u) shows asymptotically cubic growth at infinity, the existence of positive radial solutions for the quasilinear Schrödinger equation is obtained when b is large or equal… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.