Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
China's Losses Plateau (LP) is one of the ecologically vulnerable and the most severe soil erosion regions. Thus, knowing spatiotemporal changes in evapotranspiration (ET) and its components (soil evaporation, E; transpiration, T; and vegetation interception evaporation, EI) and revealing the underlying mechanisms are vital for ecosystem and water resources sustainability for this region. Here, we investigate the spatiotemporal changes in ET and its components and then quantify the impacts of climate variables (i.e., precipitation, radiation, temperature, and relative humidity) and vegetation dynamics (e.g., land use/cover changes [LUCC] and changes in leaf area index [LAI]) on their annual trends, by using a process‐based terrestrial ecosystem model and a joint‐solution method with multiple sensitivity numerical experiments. Results show that over 67% of the study region experienced significant (p < 0.05) increases in annual ET, T, and EI, with regional average rises of 4.05, 3.67, and 0.74 mm·year−1, respectively. However, there are significant (p < 0.05) decreases in regional mean E of 0.38 mm·year−1, and the negative trend covers 35.8% of the study area. E, T, and EI changes dominate the annual ET trends over 11.8%, 87.3%, and 0.9% of the study area, respectively. Attribution analyses highlight the increased LAI as the critical factor governing these trends across most of the LP (>58%). At the same time, precipitation and LUCC play a more dominant role in the remaining areas. This study emphasizes the spatial heterogeneity in the drivers of changes in ET and its components and highlights the critical role of vegetation dynamics. These findings provide valuable insights for understanding the ET processes and guiding sustainable water resource management in the LP.
China's Losses Plateau (LP) is one of the ecologically vulnerable and the most severe soil erosion regions. Thus, knowing spatiotemporal changes in evapotranspiration (ET) and its components (soil evaporation, E; transpiration, T; and vegetation interception evaporation, EI) and revealing the underlying mechanisms are vital for ecosystem and water resources sustainability for this region. Here, we investigate the spatiotemporal changes in ET and its components and then quantify the impacts of climate variables (i.e., precipitation, radiation, temperature, and relative humidity) and vegetation dynamics (e.g., land use/cover changes [LUCC] and changes in leaf area index [LAI]) on their annual trends, by using a process‐based terrestrial ecosystem model and a joint‐solution method with multiple sensitivity numerical experiments. Results show that over 67% of the study region experienced significant (p < 0.05) increases in annual ET, T, and EI, with regional average rises of 4.05, 3.67, and 0.74 mm·year−1, respectively. However, there are significant (p < 0.05) decreases in regional mean E of 0.38 mm·year−1, and the negative trend covers 35.8% of the study area. E, T, and EI changes dominate the annual ET trends over 11.8%, 87.3%, and 0.9% of the study area, respectively. Attribution analyses highlight the increased LAI as the critical factor governing these trends across most of the LP (>58%). At the same time, precipitation and LUCC play a more dominant role in the remaining areas. This study emphasizes the spatial heterogeneity in the drivers of changes in ET and its components and highlights the critical role of vegetation dynamics. These findings provide valuable insights for understanding the ET processes and guiding sustainable water resource management in the LP.
Various offline drought indices have been widely used to project dryness/wetness and drought changes. However, the results derived from these indices often differ from or even contradict observations and direct projections made by coupled climate models. Therefore, it is crucial to investigate this scientific debate thoroughly and identify the potential causes. This study adopts a water demand-side perspective, focusing on potential evapotranspiration (PET), to address such controversy. Employing the Standardized Precipitation-Evapotranspiration Index (SPEI), three PET models including the Food and Agriculture Organization of the United Nations’ report 56 (FAO-56) Penman-Monteith (PM) model, a corrected FAO-56 PM model incorporating CO2 physiological effect (PMCO2), and a land-atmosphere coupled PET model (PET-LAC) are further compared. Despite projected increases in PET across most land areas, the PM shows the most pronounced increases among these PET models. Compared to PMCO2 and PET-LAC, the PM model predicts the most significant drying, with the 3-month SPEI decreasing by 0.50±0.23 /yr. Additionally, it projects the most substantial drought intensification, with increases in areas, intensity, and duration of 28±6.9%, 0.70±0.20/yr, and 2.90±0.83 month/yr, respectively. Meanwhile, these projections correspond to the most extensive area percentages, with 78.5±10% for drying, 94.8±7.2% for drought intensity, and 93.6±7.9% for drought duration. These findings imply that the commonly used PM model overestimates future drought conditions. Differences and contradictions between the drought projections from PM-based offline indices and direct climate model outputs can be partly attributed to the omission of CO2 physiological effect and land-atmosphere coupling constraints in the PM model. This study highlights the importance of improving PET models by incorporating these constraints, thereby providing valuable insights for enhancing the accuracy of future drought assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.