Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Maritime surveillance is crucial for ensuring compliance with regulations and protecting critical maritime infrastructure. Conventional tracking systems, such as AIS or LRIT, are susceptible to manipulation as they can be switched off or altered. To address this vulnerability, there is a growing need for a visual monitoring system facilitated by unmanned systems such as unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs). Equipped with sensors and cameras, these unmanned vehicles collect vast amounts of data that often demand time-consuming manual processing. This study presents a robust method for automatic target vessel re-identification from RGB imagery captured by unmanned vehicles. Our approach uniquely combines visual appearance and textual data recognized from the acquired images to enhance the accuracy of target vessel identification and authentication against a known vessel database. We achieve this through utilizing Convolutional Neural Network (CNN) embeddings and Optical Character Recognition (OCR) data, extracted from the vessel's images. This multi-modal approach surpasses the limitations of methods relying solely on visual or textual information. The proposed prototype was evaluated on two distinct datasets. The first dataset contains small vessels without textual data and serves to test the performance of the fine-tuned CNN model in identifying target vessels, trained with a triplet loss function. The second dataset encompasses medium and large-sized vessels amidst challenging conditions, highlighting the advantage of fusing OCR data with CNN embeddings. The results demonstrate the feasibility of a computer vision model that combines OCR data with CNN embeddings for target vessel identification, resulting in significantly enhanced robustness and classification accuracy. The proposed methodology holds promise for advancing the capabilities of autonomous visual monitoring systems deployed by unmanned vehicles, offering a resilient and effective solution for maritime surveillance.
Maritime surveillance is crucial for ensuring compliance with regulations and protecting critical maritime infrastructure. Conventional tracking systems, such as AIS or LRIT, are susceptible to manipulation as they can be switched off or altered. To address this vulnerability, there is a growing need for a visual monitoring system facilitated by unmanned systems such as unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs). Equipped with sensors and cameras, these unmanned vehicles collect vast amounts of data that often demand time-consuming manual processing. This study presents a robust method for automatic target vessel re-identification from RGB imagery captured by unmanned vehicles. Our approach uniquely combines visual appearance and textual data recognized from the acquired images to enhance the accuracy of target vessel identification and authentication against a known vessel database. We achieve this through utilizing Convolutional Neural Network (CNN) embeddings and Optical Character Recognition (OCR) data, extracted from the vessel's images. This multi-modal approach surpasses the limitations of methods relying solely on visual or textual information. The proposed prototype was evaluated on two distinct datasets. The first dataset contains small vessels without textual data and serves to test the performance of the fine-tuned CNN model in identifying target vessels, trained with a triplet loss function. The second dataset encompasses medium and large-sized vessels amidst challenging conditions, highlighting the advantage of fusing OCR data with CNN embeddings. The results demonstrate the feasibility of a computer vision model that combines OCR data with CNN embeddings for target vessel identification, resulting in significantly enhanced robustness and classification accuracy. The proposed methodology holds promise for advancing the capabilities of autonomous visual monitoring systems deployed by unmanned vehicles, offering a resilient and effective solution for maritime surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.