In the present study, a viscoplastic self-consistent crystal plasticity model (VPSC-RGBV), which accounts for various microstructural features, including the accumulation and annihilation of dislocations due to slip activity and latent hardening originated from interactions between gliding dislocations on different slip planes, is described. The simulation results of the VPSC-RGBV model are compared with those of a macro-mechanical distortional plasticity model, the so-called homogeneous anisotropic hardening (HAH), and experimental data pertaining to metals undergoing complex loading histories. The differences between the simulated and experimental results under nonproportional loading, including 1) the stress-strain curve, 2) instantaneous r-value after strain-path change, and 3) yield surface evolution, are discussed. Finally, potential improvements are suggested for VPSC-RGBV model.