2014
DOI: 10.1007/s00009-014-0474-2
|View full text |Cite
|
Sign up to set email alerts
|

On the Biharmonic Curves in the Special Linear Group $${{\mathbf{SL}}{\bf (2},{\mathbb{R}}{\bf )}}$$ SL ( 2 , R )

Abstract: We characterize the biharmonic curves in the special linear group SL(2, R). In particular, we show that all proper biharmonic curves in SL(2, R) are helices and we give their explicit parametrizations as curves in the pseudo-Euclidean space R 4 2 .Therefore, we obtain that J 1 e 1 = e 2 , J 1 e 3 = e 4 .Consequently, if we consider the orthonormal basis {E i } 4 i=1 of R 4 2 given by E 1 = (1, 0, 0, 0) , E 2 = (0, 1, 0, 0) , E 3 = (0, 0, 1, 0) , E 4 = (0, 0, 0, 1) , there must exists A ∈ O 2 (4), with J 1 A = … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0
1

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 4 publications
(9 reference statements)
0
0
0
1
Order By: Relevance
“…Os resultados deste estudo foram estão presentes no artigo [56]. Primeiramente demonstramos que as curvas bi-harmônicas de (SL(2, R), g τ ) fazem um ângulo constante ϑ com o campo de vetores tangente à fibração de Hopf (ver Seção 1.2).…”
unclassified
“…Os resultados deste estudo foram estão presentes no artigo [56]. Primeiramente demonstramos que as curvas bi-harmônicas de (SL(2, R), g τ ) fazem um ângulo constante ϑ com o campo de vetores tangente à fibração de Hopf (ver Seção 1.2).…”
unclassified